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1  | INTRODUC TION

Over the last decade, radiofrequency catheter ablation (RFCA) 
has become an established treatment for ventricular arrhythmias 
(VA). The recent international consensus report supports RFCA as 

a first-line therapy for VA in normal heart Ventricular Tachycardia 
(VT) and in structural heart VT after ineffective anti-arrhythmic drug 
(AAD) therapy.1 Several groups have taken this further, proposing 
prophylactic VT ablation before implantable cardiac defibrillator 
(ICD) insertion; however this remains an area of debate.2 Though 
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Abstract
Radiofrequency catheter ablation has become an established treatment for ventricu-
lar tachycardia. The exponential increase in procedures has provided further insights 
into mechanisms causing arrhythmias and identification of ablation targets with the 
development of new mapping strategies. Since the definition of criteria to identify 
myocardial dense scar, borderzone and normal myocardium, and the description of 
isolated late potentials, local abnormal ventricular activity and decrementing evoked 
potential mapping, substrate-guided ablation has progressively become the method 
of choice to guide procedures. Accordingly, a wide range of ablation strategies have 
been developed from scar homogenization to scar dechanneling or core isolation 
using increasingly complex and precise tools such as multipolar or omnipolar map-
ping catheters. Despite these advances long-term success rates for VT ablation have 
remained static and lower in nonischemic than ischemic heart disease because of the 
more patchy distribution of myocardial scar. Ablation aims to deliver an irreversible 
loss of cellular excitability by myocardial heating to a temperatures exceeding 50°C. 
Many indicators of ablation efficacy have been developed such as contact force, im-
pedance drop, force-time integral and ablation index, mostly validated in atrial fi-
brillation ablation. In ventricular procedures there is limited data and ablation lesion 
parameters have been scarcely investigated. Since VT arrhythmia recurrence can be 
related to inadequate RF lesion formation, it seems reasonable to establish robust 
markers of ablation efficacy.
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substrate ablation prior to ICD implantation failed to show a signifi-
cant reduction in VT recurrence, the studies demonstrated a reduc-
tion in both overall and cardiovascular mortality.1 The mechanism of 
this reduction in mortality despite persistent VT post-ablation has 
yet to be elucidated.

The exponential increase in the treatment of VAs with RFCA in 
clinical practice has provided further insight into the mechanisms of 
these arrhythmias, improved identification of ablation targets with 
the development of new mapping strategies supported by mapping 
and ablation technological advances. Much of this growth in the field 
of VT RFCA has been focused on identification of the VT critical 
isthmus and localizing the site of origin of the arrhythmias.3

Traditionally, the 12 lead ECG has been a useful tool in defining 
the location of arrhythmia origin and this should not be neglected de-
spite the subsequent development of highly specific complex map-
ping technologies. These technologies have helped to further define 
the VT site of origin from conventional entrainment and pacing ma-
neuvers during triggered VT, towards substrate mapping during sinus 
or paced rhythm4-6; Substrate-guided ablation has progressively be-
come the method of choice to guide ablation7 achieving improved 
rates of intra-procedural success and long-term freedom from VT 
recurrences.8 The cornerstone of an effective substrate-guided ab-
lation strategy is the precise identification of diastolic conduction 
channels and abnormal fractionated electrograms (EGMs) that help 
to define potentially pro-arrhythmic substrate within the border-
zone (BZ) and dense scar region.9-11 We have combined these com-
plementary mapping strategies into a strict mapping and ablation 
workflow (UHCW VT ablation workflow) as summarised in Figure 1.

After the first description by Marchlinsky et al, the electri-
cal criteria for the characterization during substrate mapping of 

myocardial dense scar, BZ and normal myocardium have been uni-
versally adopted and more recently adapted by the EP community.11 
The natural extension of this seminal work has been the quanti-
tative and qualitative analysis of substrate electrograms (EGMs) 
which has provided further insights into the identification of slow 
diastolic conduction channels and abnormal electrical activity. This 
work extended from the appreciation of isolated late potentials (LP) 
to included local abnormal ventricular activity (LAVA)12 and more 
recently decrementing evoked potential (DEEP) mapping.13 Indeed, 
it has been shown that specific EGM signatures defining LPs with 
lower amplitude and shorter duration are greater predictors of the 
VT isthmus.14 Accordingly, a wide range of substrate ablation strate-
gies have been developed over the years from scar homogenization 
to scar dechanneling or core isolation. Many of these topics have 
been the focus of a number of prior reviews, some published by our 
group.15,16

Technological advances for VT mapping has been another field 
that has undergone exponential development. EGM amplitude for 
normal and abnormal tissue were described using the standard ab-
lation and mapping catheters with 4-mm tip electrodes, 1-mm ring 
electrodes and 2-mm interelectrode spacing. However, EGMs de-
tected are strictly dependent on electrode size and orientation re-
spective to wavefront propagation, which rapidly changes directions 
resulting in a changeable recording according to the vector line of as-
sessment. As a result, these catheters may not identify low-voltage 
EGMs propagating orthogonal to their orientation potentially miss-
ing critical arrhythmic substrate. More recently, multipolar electrode 
catheters with 1mm electrodes and variable interspacing have been 
introduced facilitating high-density map construction. This enables 
an increase in the near-field voltage detected and reduces far-field 

F I G U R E  1   Patient with ischemic cardiomyopathy. VT tachycardia cycle length (TCL) 380 ms mapped using HD Grid. (A) Endocardial 
LV substrate map demonstrates anterior wall scar with heterogeneous scar extending towards the septum. Voltage scanning (0.17 mV) 
identifies a CC extending from the apical septal BZ into the dense scar region. Decrementing evoked potential (DEEP) potentials tagged 
green. (B) Example Late Potentials (single asterisk) DEEP potentials (double asterisks) identified with pacing from the right ventricular apex 
with two ventricular sensed extra stimuli at 400 ms (C) Pacemapping during entrainment mapping yields 12/12 pacemap from the apical 
septal BZ. (D) Entrainment from middiastolic potentials yields PPI-TCL < 30ms with stim-QRS > 60ms. (E) Clinical VT activation map: earliest 
activation at anterior dense scar region. (F) Postablation substrate remap shows residual late potentials still present (purple zone). (G) With 
further ablation residual late potentials completely eliminated
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signals providing a better definition of substrate. Furthermore, 
omnipolar mapping catheters also provide a wavefront directional 
assessment.15 This is advantageous in a structure like myocardial 
scar in which wavefront depolarization rapidly changes direction. 
Notably, the recently developed Advisor HD Grid Mapping Catheter 
(HD GRID) is a multipolar catheter with electrodes equally inter-
spaced along each spline and arranged in a grid configuration17 The 
catheter will simultaneously record EGMs along and across different 
orthogonal vectors when point acquisition is set in the bidirectional 
WAVE configuration. This provides a more efficient point acquisi-
tion and greater VT substrate definition of the scar BZ so facilitating 
conduction channel identification and quantification, which are both 
important surrogates for ablation strategy.16 Our group has subse-
quently shown that VT mapping with the HD GRID has a significant 
positive impact on the long-term outcomes of VT ablation (paper in 
press).

Indeed, an accurate, detailed substrate map plays a crucial role 
in short- and long-term ablation efficacy as critical isthmus and slow 
conduction region identification is facilitated. These regions provide 
the substrate for reentrant circuits and are often characterized by 
the presence of isolated LPs11,18-21 that are used as indicators of the 
presence of a critical zone that is a target for ablation; in fact it has 
been demonstrated that LPs significantly increase the specificity for 
identifying the clinical VT circuit.9 Three zones within the myocar-
dium are important to be recognized: “normal myocardium” defined 
as a voltage >1.5 mV, “dense scar” or low-voltage myocardium de-
fined by a voltage <0.5 mV and scar BZ or intermediate voltage myo-
cardium with voltage between 0.5 mV and 1.5 mV.11,22 It is important 
to recognise that with the advent of high-density mulipolar mapping 
catheters, the bipolar voltage parameters that define BZ can range as 
low as 0.02 mV. Much of the focus is directed to scar BZ since initial 
studies in open-heart models demonstrated that ischemic VT origi-
nates in the area surrounding the dense scar and operative removal 
of this tissue could cure 70%–80% of arrhythmias.23 More recent 
studies have partially confirmed this observation but have also high-
lighted that a significant proportion of reentrant circuit isthmuses 
exist within the dense scar, epicardium or in normal myocardium.24

Among the varying substrates for structural heart diseases an 
important determinant in ablation efficacy is the underlying car-
diomyopathy: for instance the scar region in most ischemic cardio-
myopathy (ICM) patients is endocardial25; in contrast, nonischemic 
dilated cardiomyopathy (NIDCM) usually presents as a patchy dis-
tribution of fibrosis largerly found in perivalvular region with less 
dense scarring26 and with more epicardial involvement. A study by 
Nakahara et al demonstrated that in NIDCM there is a significantly 
lower numbers of late potentials (<100 ms after the QRS) or very late 
potentials (>100 ms after the QRS) and a more epicardial distribution 
of fibrosis.27 They also demonstrated that in NIDCM there are fewer 
good-to-excellent pace-match sites compared with ICM; moreover 
in NIDCM it has been demonstrated that there is a higher incidence 
of focal arrhythmia mechanisms.28 There is, however, evidence that 
a purely substrate-guided ablation is an effective approach in the 
treatment of VT with lower success rates in NIDCM than ICM.7 

Differences especially in long-term outcomes may be because of 
the patchy nature of fibrotic burden in NIDCM and its epicardial dis-
tribution that make ablation more challenging; in fact it has been 
demonstrated by Dinov et al in the HELP VT study that combining 
endocardial and epicardial ablation especially in NIDCM substan-
tially reduces long-term recurrences of VT.29 Moreover there are 
inconclusive data regarding the predictors of ablation efficacy and 
long-term survival free of VAs both in ICM and NICM.30-35

The experience in ablation treatment of ventricular arrhythmias 
in normal hearts and more specifically in treatment of premature 
ventricular complexes (PVCs) has also advanced. It has been demon-
strated that an ablative approach is more efficacious than conserva-
tive medical therapy with anti-arrhythmic drugs (AADs).36,37 Studies 
also demonstrated that PVC suppression may lead to reverse ven-
tricular remodeling and amelioration of pump function in selected 
cases of PVC-associated cardiomyopathy.38-42 On the other hand, 
there is debate as to whether this form of cardiomyopathy is cause 
or consequence of frequent PVCs.41,43 For all these reasons a more 
precise risk-benefit assessment was needed in order to decide if 
ablation is cost effective and it has been given by Jin-sheng Wang 
et al44 who published a retrospective study in which they assessed 
predictors of complication and success in patients treated with PVC 
ablation. In a cohort of 1231 patients the overall success rate was 
94.1% with a complication rate of 2.7% with left ventricular and epi-
cardial (EPI) origins as predictors of complication, arguing that given 
an overall favorable prognosis if untreated,45 ablation is unadvisable 
in these origins.44

2  | ABL ATION MARKERS IN V T ABL ATION

Embracing RFCA as an effective therapy for the treatment of VAs 
is based on the fundamental principle that the intervention delivers 
solid and durable ablation lesions in the human myocardium. RFCA 
utilises electromagnetic energy that once delivered at the myocar-
dial tissue interface is transformed into heating that irreversible 
damages the viable myocytes causing the loss of cellular excitability. 
Heating to a critical temperature directly destroys the myocardium 
in contact with the catheter bipolar electrode delivering energy; 
this process is known as resistive heating.46 However considering 
the small dimension of the tip of the catheter, the size and width 
of the lesion is determined by the destruction of surrounding tis-
sue by heating transfer, a process also known as conductive heating. 
Irreversible loss of cellular excitability generally occurs at tempera-
tures exceeding 50°C, while at lower temperatures the damage is 
not permanent and myocytes can recover excitability. Indeed the 
clinical manifestation of the recovery of cellular viability is the recur-
rence of arrhythmias.46

Prior to the increasing application of RFCA in the ventricles, 
ablation therapy has been widely applied and studied in the atria 
and more specifically in the complex setting of atrial fibrillation 
(AF). There is a wealth of literature that has explored optimizing 
ablation lesions in AF to define the fine balance between the 
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creation of durable ablation lesions versus the avoidance of lesion 
formation complications such as pulmonary vein stenosis, cardiac 
tamponade and collateral damage to adjacent structures such as 
the phrenic nerve and oesophagus. Due to the challenging nature 
of visualizing lesion formation in real time and ensuring an effec-
tive transmural lesion, different surrogate measures of lesion qual-
ity have been utilized. The fall in local impedance during ablation 
is considered as a marker of the direct effect of ablation in cardiac 
tissue.47-49

One of the major determinants of lesion formation is an ade-
quate contact between the tip of the catheter and the myocardial 
surface. A major technological advancement in ablation catheters 
was the development of sensors at the distal tip capable of moni-
toring contact, contact force (CF). While the bulk of evidence has 
investigated the correlation between CF and outcome of pulmonary 
vein isolation (PVI) in AF, very limited data are available regarding VT 
ablation. Elsokkari et al reported the only experience so far showing 
that in a small cohort of patients with ischemic heart disease, a mean 
contact force of 10 g within the scar zone has the best correlation 
with effective lesion formation.50

A more recent ablation marker is the Force-Time Integral (FTI), 
which multiplies CF by radiofrequency application duration; it has 
been demonstrated that it is predictive of PVI segment reconnection 
at repeat electrophysiology study.51 Limitations in this ablation pa-
rameter are the exclusion of maximal power settings being delivered 
and the assumption that a single target FTI is required in all myocar-
dial segments with varying wall thickness and underlying substrate. 
Indeed, this partly explains that the usage of this marker is related 
to at least one PV reconnection in one-third of AF ablation cases52; 
moreover the contribution of radiofrequency application duration is 
proportionally less important in lesion creation than CF especially 
for prolonged energy deliveries; in fact lesion depth and width are 
dependent on both power and ablation duration until it lasts more 
than 20s, beyond this duration, lesion characteristics depend only 
on power used53; so with the same FTI there is a potential large dif-
ference in lesion formation.

In order to overcome some of these important limitations the 
Ablation Index (AI) (Biosense Webster Inc) variable evolved which is 
calculated by incorporating power delivery in its formula and com-
bining it with CF and time in a weighted equation. It has been shown 
to be a more precise estimation of lesion depth in a canine model.54 
It has also been compared with FTI in a study by Das et al who 
demontrated that AI and FTI in a wide area circumferential ablation 
(WACA) segment are independently predictive of conduction re-
covery at follow-up electrophysiology studies with a trend towards 
a greater sensitivity with AI. It was also highlighted that different 
myocardial regions have different minimum values of both indices 
required to prevent subsequent reconnections.55

Since its validation as a reliable marker of short- and long-term 
ablation efficacy, increasing emphasis has been placed on AI, the 
feasibility in settings other than AF, and the pursuit to determine op-
timal cutoffs. In a recently published paper, Casella et al retrospec-
tively investigated this topic in a multicenter observational study 

evaluating AI reliability in patients who underwent RFCA of idio-
pathic outflow tract PVCs performed using the CARTO electroana-
tomic mapping system. They investigated 1226 lesions and found 
that both maximum and mean AI values were significantly higher in 
patients without PVC recurrence even when stratified for anatom-
ical areas. Lesions were analyzed according to acute and long time 
success and accordingly the AI values were lower both in patients 
with acute (usually ascribed to procedural reasons) and long-term 
(6 months) failure; in this second case occasionally acute success 
was reached suppressing PVCs, but as a result of induced edema, 
recurrences manifested once the edema had resolved. Authors con-
cluded that AI seems to be a reliable index to evaluate RFCA in PVC 
ablation56 and further explored the possibility to establish AI cut-
offs. Despite the retrospective nature of the analysis which was not 
AI-guided the authors proposed that maximum AI values were more 
reliable than mean AI values.

Unlike the field of AF ablation, where the AI algorithm has been 
studied extensively in the atrium,57 there is very limited experience on 
the utility of AI in catheter ablation of VT in patients with structural 
heart disease. In addition, although the ablation targets in scar-related 
VT (areas of low-voltage myocardium (LVM) and intermediate voltage 
myocardium (IVM)) have been described, data on ablation efficacy such 
as AI, CF, impedance drop in such areas are lacking.

There is an ongoing clinical trial led by Ullah et al to assess the 
value of LPs and AI in VT ablation (ClinicalTrials.gov Identifier: 
NCT03437408). This is a small (n = 15) open label study which aims 
to collect ventricular substrate maps (with automated tagging in 
different pacing modalities) in patients undergoing ablation for VT. 
During ablation, impedance and AI data will be collected. Thus, the 
only experience investigating radiofrequency (RF) lesion depth and 
width in normal voltage myocardium (NVM), LVM and IVM defined 
by electroanatomical maps (EAM) and their association with AI and 
impedance drop is limited to basic science studies.

Tofig et al performed in vivo EAM and endocardial RF ablation in 
10 pigs at 12 weeks post-myocardial infarction (MI) by left anterior 
descending artery (LAD) occlusion and reperfusion.58 The EAM and 
endocardial ablations were performed in the NVM, IVM, and LVM 
myocardium. Ninety RF lesions were evaluated in the NVM (n = 36), 
IVM (n = 32) and LVM (n = 22) groups. In terms of baseline charac-
teristics, there was no difference in CF, power, AI and duration of RF 
ablation between the 3 groups. Interestingly despite this, the RF le-
sion depth and width were smaller in IVM and LVM compared to NVM 
(both P < .001). In addition, the RF lesion depth and width were smaller 
in LVM compared with IVM (P < .001). The RF lesion depth and width 
correlated with CF, AI and impedance drop in NVM and IVM: The RF 
lesion depth and width correlated stronger with AI in NVM than in IVM 
(depth P < .01; width P < .05) while the impedance drop during ablation 
was higher in NVM (27 ± 10Ω) compared with IVM (12 ± 7Ω, P < .001) 
and LVM (9 ± 3Ω, P < .001) but this did not differ between IVM and 
LVM. Tofig et al also utilized native contrast magnetic resonance im-
aging (ncMRI) to correlate the RF lesion depth and width with that 
of gross anatomical evaluation. They found that the RF lesion depth 
and width as assessed by cnMRI correlated closely with that of gross 
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anatomical evaluation in NVM, IVM (depth and width P < 0.001 in both 
NVM and IVM) and LVM (depth and width P < .05).

The findings by Tofig et al suggest that IVM and LVM regions are 
less prone to conductive heating compared to NVM and this may be 
because of the higher degree of heterogeneity of myocardial com-
position in the IVM and LVM regions. In terms of the potential ap-
plicability in the clinical setting, the findings of this study could one 
day be used to guide the titration of RF delivery to ensure adequate 
lesion formation especially in the IVM and LVM regions.

This was not the first study evaluating RFCA in MI models but 
it is the first one that utilizes the newer indices to evaluate RF ef-
ficacy and differences between areas of normal myocardium and 
scar. A similar study was performed by Kovoor et al59 using a ca-
nine LAD ligation model without reperfusion investigating RF lesion 
size after epicardial ablation with a needle catheter; evaluating in-
tramural temperature at different distances from the ablation site 
both in NVM and in the scar zone with no differences observed 
between them. However there are several key differences between 
Tofig's and Kovoor's work, such as site of ablation (endocardial vs 
epicardial), different catheters (3.5 mm irrigated vs needle) and the 
presence of scar zone with and without reperfusion after MI. Data 
supporting Tofig's findings also come from An et al's in vitro study 
using normal bovine myocardium and diseased human tissue with 
considerably smaller RF lesions in diseased tissue.60

Similar to AI, Lesion Size Index (LSI) is a multi-parametric ablation 
index that incorporates in a weighted formula the 3 components con-
tact force, power and duration of radiofrequency delivery. In an in-vitro 
model of radiofrequency ablation on porcine left ventricular myocar-
dial slabs, LSI values were highly predictive of lesion width and depth, 
whereas power and CF did not 61. More recently, in an ex-vivo model, 
it has been shown that at similar LSI values, lesion width but not depth 
was dependent on the catheter tip orientation towards the tissue 62, 
whereas AI has been shown to be highly dependent on the angle of 
orientation of catheter tip, as the correlation with lesion width and size 
is lost at shallow contact angles 63. These results indicate that LSI is a 
reliable marker for safety and efficacy during ablation even with vary-
ing catheter to tissue contact angles.

In a study investigating tissue temperatures in porcine heart spec-
imens during radiofrequency ablation at different power settings for 
fixed AI and LSI values, Takemoto et al showed that the maximum 
tissue temperature was significantly lower at 40 W compared to 20 
W for a given LSI value, providing evidence for a safer LSI-guided 
procedure at higher power RF settings. In comparison, an equivocal 
AI provided a similar tissue temperature at high and low power. Of 
note LSI-guided lesion size was significantly larger with 20 W appli-
cations due to the longer duration of high temperature and enhanced 
heat distribution, whilst lesion size did not significantly alter with AI-
guided 20 W or 40 W applications for the same AI value64.

A few preliminary studies have assessed performance of LSI in clin-
ical setting, showing better long-term free survival from AF recurrence 
in PVI procedures guided by LSI compared contact force monitoring65.  
More recently, Dello Russo et al attempted to identify a cut-off value of 
LSI for the delivery of effective lesions during PVI. In this retrospective 

study of 37 patients, the authors reported that a mean LSI of 5 was as-
sociated with a lower incidence of arrhythmias recurrence at 1-year fol-
low up 66. The LIVID study (A study on Lesion Index guided VentrIcular 
tachycarDia ablation) is on-going at our Institution and will assess the 
performance of LSI during VT ablation with the aim to provide opti-
mal LSI targets for ablation, based on the pre-ablation high density 
derived substrate map. Recently a catheter capable of measuring local 
myocardial impedance has been introduced into clinical practice; the 
IntellaNav MiFi OI Catheter (Boston Scientific, Marlborough, MA) 
which is equipped with three equally spaced tip microelectrodes. An 
alternating current injected between these microelectrodes and the 
distal catheter ring creates a local potential field, which is distorted 
at contact with myocardium and converted by an algorithm called 
‘DIRECTESENSE’ into impedance. Preliminary clinical studies have 
shown that the absolute drop and drop rate of Local Impedance (LI) is a 
reliable marker of an effective lesion in both AF and VT61,67,68. Münkler 
et al in a mixed cohort of 28 patients undergoing VT ablation have re-
ported that high values of absolute LI and rate of LI drop are associated 
with termination of VT during ablation 68.

The potential advantage of LI DIRECTSENSE in respect to AI and LSI 
is that it facilitates a substrate map based on tissue impedance defining 
areas of scar and normal myocardium as well areas of impedance drop 
after ablation. Indeed the data reported by Münkler et al in patients 
with NIDCM suggests a potential preference for LI guided procedure 
for VT ablation in this cohort of patients. Indeed it is in the context of 
NIDCM where VT ablation presents the most unsatisfactory outcomes 
due to the already described characteristics and distribution of myocar-
dial scar. Recently, Della Bella and colleagues reported on the feasibility 
and efficacy of bipolar ablation in patients with NIDCM VT originating 
from the deep inter-ventricular septum. Of note, the authors regulated 
the delivery of bipolar radiofrequency pulses on the basis of a drop in 
impedance of 20-40 Ω as per prior ex vivo study protocols.

Increasing insights regarding radiofrequency lesions and their 
anatomical characteristics have come from the expanding use of 
cardiac MRI (CMR). Initial observations have emerged from animal 
models 69,70,71. Until recently, few studies had been performed aim-
ing to identify specific CMR findings caused by ablation in human 

F I G U R E  2   Central Illustration showing the three steps in which 
VT ablation can be differentiated
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hearts with hyperenhanced (HE) lesions having been identified 
years after ablation of ventricular premature beat (VPB)s 72 and 
in another study early nonenhanced (NE) lesions mimicking typ-
ical no-reflow phenomenon in acute MI after ablation of AF 73 
possibly caused by coagulation and contraction band necrosis that 
hampers diffusion of gadolinium. Dinov et al. have recently pub-
lished 34 a study in which the investigators better describe the re-
lationship between myocardial lesion characteristics and outcomes 
in patients treated with ablation for VA early after the procedure. 
Comparing CMR examinations performed before and early (by 
the third day post-ablation) post-procedure they reported that RF 
lesions appear as NE dark areas surrounded by a hyperenhanced 
rim. They further analyzed images obtained calculating volume and 
depth of NE lesions showing a positive correlation between these 
NE lesions and impedance drop with values considerably higher in 
patients with transmural (>75% of LV wall) lesions. However, others 
have reported an alternative correlation when considering acute 
RFCA efficacy (no VPB in the 30 minutes post-ablation or inability 
to trigger VT) showing larger lesion volume and depth as well as 
a larger impedance drops when procedures have failed. This may 
be due to the inability to reach the arrhythmia substrate. With the 
observation that early NE lesions evolve into scar tissue after 3 
months 73, these lesions appear to be a more reliable marker of long 
term efficacy than late HE lesions as previously shown. These find-
ings offer again the opportunity to highlight the fact that in RFCA 
of VA, substrate modification and LP elimination is more important 
for a successful procedure than lesion transmurality, emphasising 
the need for precision tools and techniques. (Figure 2)

In conclusion, RFCA has become a mainstream therapy for the 
treatment of VT. The procedure has evolved focusing on the ac-
curate identification of targets for ablation, improving and defin-
ing substrate mapping. In addition, there has been a technological 
advancement in the monitoring and titration of energy delivered 
to yield effective RF lesion formation. However, the application of 
these tools have been scarcely investigated and implemented in the 
practice of VT ablation. Since VT recurrence in patients treated with 
RFCA can be related, at least partly, to inadequate RF lesion forma-
tion, it is imperative that we continue to explore the need for robust, 
transferrable markers of ablation efficacy.
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